Postado 28/11/2010 às 14:59 11/28, 2010 Este é um post popular. RESUMO A glutamina é o aminoácido livre mais abundante no plasma e no tecido muscular. Nutricionalmente é classificada como um aminoácido não essencial, uma vez que pode ser sintetizada pelo organismo a partir de outros aminoácidos. A glutamina está envolvida em diferentes funções, tais como a proliferação e desenvolvimento de células, o balanço acidobásico, o transporte da amônia entre os tecidos, a doação de esqueletos de carbono para a gliconeogênese, a participação no sistema antioxidante e outras. Por meio de técnicas de biologia molecular, estudos demonstram que a glutamina pode também influenciar diversas vias de sinalização celular, em especial a expressão de proteínas de choque térmico (HSPs). As HSPs contribuem para a manutenção da homeostasia da célula na presença de agentes estressores, tais como as espécies reativas de oxigênio (ERO). Em situações de elevado catabolismo muscular, como após exercícios físicos intensos e prolongados, a concentração de glutamina pode tornar-se reduzida. A menor disponibilidade desse aminoácido pode diminuir a resistência da célula a lesões, levando a processos de apoptose celular. Por essas razões, a suplementação com L-glutamina, tanto na forma livre, quanto como dipeptídeo, tem sido investigada. Alguns aspectos bioquímicos, metabólicos e mecanismos moleculares da glutamina, bem como os efeitos de sua suplementação, são abordados no presente trabalho. INTRODUÇÃO Em 1873, Hlasiwetz e Habermann foram os primeiros a considerar a glutamina como sendo uma molécula com propriedades biologicamente importantes. Posteriormente, novas observações levaram os pesquisadores a pensar que a amônia encontrada em hidrolisados protéicos poderia ser o resultado da liberação de glutamina, bem como de asparagina (1,2). Cerca de 60 anos depois, Krebs, em 1935, demonstrou que células possuem a capacidade de sintetizar ou degradar glutamina (2). Trabalhos com diferentes tipos de células, tais como linfócitos, macrófagos, enterócitos, células HeLa, mostraram que tanto a proliferação celular pode ser aumentada, quanto a manutenção das estruturas e funções celulares pode ser mantida, em meios de cultura contendo glutamina (3). Em todas as células, a glutamina pode ceder átomos de nitrogênio para a síntese de purinas, pirimidinas e aminoaçúcares (4). Resultados de pesquisas evidenciam a importância da glutamina para um grande número de vias metabólicas e tais mecanismos, dependentes de glutamina, passaram a ser denominados como vias glutaminolíticas. O desenvolvimento de novas técnicas científicas possibilitou a observação de diversos efeitos e mecanismos moleculares em que a glutamina está envolvida (3). Trabalhos demonstram também efeitos agudos e crônicos da suplementação com glutamina em situações catabólicas, tais como câncer, HIV, dengues, sepse, cirurgias, exercícios físicos intensos, entre outros. A síntese, metabolismo, função e suplementação da glutamina são alguns aspectos apresentados nesta revisão. Considerações metabólicas e bioquímicas da glutamina A glutamina (C5H10N2O3) é um L-α-aminoácido, com peso molecular de aproximadamente 146,15kda e pode ser sintetizada por todos os tecidos do organismo. Fazem parte de sua composição química nas seguintes quantidades: carbono (41,09%), oxigênio (32,84%), nitrogênio (19,17%) e hidrogênio (6,90%) (1,5). É classificada de acordo com seu grupamento R como não carregada, mas é polar, o que significa uma característica mais hidrofílica, sendo facilmente hidrolisada por ácidos ou bases (5). Como o organismo pode sintetizar glutamina, esta é considerada como um aminoácido dispensável ou não essencial (6). A classificação da glutamina como um aminoácido não essencial, entretanto, tem sido questionada, pois em situações críticas, tais como cirurgias, traumas e exercícios físicos exaustivos, a síntese de glutamina não supre a demanda exigida pelo organismo (7,8). A glutamina é o aminoácido livre mais abundante no plasma e no tecido muscular, sendo também encontrada em concentrações relativamente elevadas em outros diversos tecidos corporais (9). A proliferação e desenvolvimento de células, em especial do sistema imune, o balanço acidobásico, o transporte da amônia entre os tecidos, a doação de esqueletos de carbono para a gliconeogênese, entre outros, são algumas das funções em que a glutamina está envolvida (5,10). Duas enzimas são responsáveis pela síntese de glutamina a partir do glutamato ou por sua degradação, também em glutamato, a saber, a glutamina sintetase e a glutaminase, respectivamente (4,9). Mediante a catálise de conversão de glutamato em glutamina e da utilização da amônia como fonte de nitrogênio e com consumo de trifosfato de adenosina (ATP), a glutamina sintetase é a enzima-chave para a síntese da glutamina e para a regulação do metabolismo celular do nitrogênio. A glutamina sintetase é uma aminotransferase amplamente distribuída entre os organismos vivos, sendo sua atividade fundamental para a manutenção da vida de microrganismos e de animais (1,2). Os fatores que regulam a atividade da glutamina sintetase são diversos, tais como glicocorticóides (8), hormônios tireoidianos (1), hormônio do crescimento e insulina (11). São atribuídas diferentes funções às ações da glutamina sintetase (12). No cérebro, é utilizada como um importante agente na redução da concentração de amônia, com consequente desintoxicação e síntese de glutamina para nova síntese de glutamato (9). No pulmão e no músculo esquelético, é responsável pela manutenção da concentração de glutamina plasmática, sendo essencial em situações patológicas ou de estresse (13). Nos rins, a glutamina sintetase é imprescindível para o controle do metabolismo do nitrogênio e manutenção do pH no organismo (12). A glutaminase é a enzima que catalisa a hidrólise de glutamina em glutamato e íon amônio. A hidrólise da glutamina representa o primeiro passo na sua utilização a partir da síntese do glutamato. Outras reações podem ocorrer principalmente na via que permite o consumo de glutamina no ciclo do ácido tricarboxílico (14). A glutaminase está envolvida em diversos processos metabólicos e pode ser encontrada em bactérias, plantas e animais. Em mamíferos, a glutaminase pode ser encontrada sob duas isoformas, uma (menos abundante) no fígado e outra nos demais tecidos, tais como rins, cérebro, leucócitos e trato gastrintestinal. Contudo, a sua forma mais ativa apresenta-se principalmente nas mitocôndrias (12). Indivíduos pesando aproximadamente 70kg apresentam cerca de 70-80g de glutamina, distribuída por diversos tecidos corporais. No sangue, a concentração de glutamina é em torno de 500-700µmol/L(15). Tanto a concentração tecidual quanto a concentração sanguínea de glutamina podem ser influenciadas pela atividade da glutamina sintetase ou da glutaminase (16). Alguns tipos de células, tais como células do sistema imune, rins e intestino, apresentam elevada atividade de glutaminase, sendo assim considerados tecidos consumidores de glutamina (16). Por outro lado, os músculos esqueléticos, os pulmões, o fígado, o cérebro e, possivelmente, o tecido adiposo apresentam elevada atividade da enzima glutamina sintetase, sendo assim considerados tecidos sintetizadores de glutamina (4,17). Quantitativamente, o principal tecido de síntese, estoque e liberação de glutamina é o tecido muscular esquelético (16). A taxa de síntese de glutamina no músculo esquelético humano é de aproximadamente 50mmol/h, sendo maior do que qualquer outro aminoácido (4). A elevada capacidade de síntese e liberação de glutamina, principalmente em situações em que há aumento na sua demanda por outros órgãos e tecidos, confere ao músculo esquelético um papel metabólico essencial na regulação da glutaminemia. Eventos cirúrgicos, queimaduras, HIV, câncer e exercícios físicos intensos e prolongados são algumas situações em que se observa que o consumo de glutamina excede a capacidade de síntese corporal (18). A predominância do tipo de fibra muscular pode influenciar a síntese de glutamina. Fibras do tipo 1 ou oxidativas podem apresentar cerca de três vezes mais estoques de glutamina em comparação com fibras do tipo 2 ou glicolíticas (9). Essa diferença está relacionada com a maior atividade da glutamina sintetase e a maior disponibilidade de ATP para a síntese de glutamina em fibras oxidativas (12). Dependendo do músculo estudado, quando a síntese de novo da glutamina é inibida, os estoques intramusculares podem ser depletados em aproximadamente sete horas (14). A síntese da glutamina no músculo esquelético, durante o estado pós- absortivo, ocorre por meio da captação de glutamato, a partir da circulação sanguínea. O glutamato é responsável por 40% da síntese de glutamina (4). O catabolismo protéico leva à produção de glutamina de forma direta e também à síntese de aminoácidos de cadeia ramificada (ACR), glutamato, aspartato e asparagina (14,19). Os esqueletos de carbono desses aminoácidos são utilizados para a síntese de novo de glutamina (20). Estudos em ratos demonstram que os ACR são transaminados, quase que exclusivamente, com α-cetoglutarato para formar glutamato, que pode fornecer seu grupo amino para formar piruvato, gerando alanina, ou incorporar amônia livre, dando origem à glutamina (20) (figura 1). Entretanto, os ACR não são completamente metabolizados, porque a enzima-chave de controle da sua taxa de oxidação, a 2-oxoisovalerato desidrogenase, apresenta-se quase totalmente na forma inativa no músculo esquelético. Consequentemente, no tecido muscular, os ACR captados inicialmente são utilizados como fornecedores de nitrogênio para a formação de glutamina e alanina (21). Hormônios como a insulina e os fatores de crescimento semelhantes à insulina (IGFs) estimulam o transporte de glutamina para o meio intracelular (18), ao passo que glicocorticóides estimulam a liberação de glutamina para o meio extracelular (5,22). Considerando-se que o gradiente transmembrana através da célula muscular é elevado para a glutamina, sua difusão livre através da membrana celular é restrita (23). Dessa forma, a glutamina necessita ser transportada de forma ativa para o interior das células, por meio de um sistema dependente de sódio (Na+), que resulta em gasto de ATP (22,24). Dentre todos os 20 aminoácidos, o transporte de glutamina através da membrana da célula muscular é o mais veloz (10). A glutamina, ao ser transportada para dentro da célula, promove, concomitantemente, a absorção de água e a liberação de potássio (K+), fato que aumenta o estado de hidratação e influencia o volume celular (figura 1) (17, 23, 25). Embora ainda controverso, o aumento no volume celular pode estimular a síntese protéica, o que é considerado como um sinal anabólico (21, 24, 25). Aspectos moleculares de ação da glutamina Estudos têm demonstrado que a glutamina pode influenciar uma variedade de funções e vias de sinalização celular (3). A modulação da expressão de genes relacionados com a síntese e degradação de proteínas, a proliferação celular e a ativação de vias envolvidas com a apoptose celular estão entre os papéis exercidos pela glutamina mais estudados (4, 5, 26, 27). A glutamina pode modular a ativação de proteínas de estresse ou choque térmico (heat schock proteins – HSPs), que estão relacionadas com a resposta antiapoptótica celular (28). A ativação dessas proteínas corresponde a uma das principais vias de sinalização que contribuem para o aumento da capacidade da célula de sobreviver a alterações na sua homeostasia em decorrência da exposição a agentes estressores, como radiação ultravioleta (UV), calor, agentes infecciosos e espécies reativas de oxigênio (ERO) (28). As HSPs são famílias de polipeptídios agrupadas de acordo com seu peso molecular, cujo principal fator indutor de sua expressão é o acúmulo de proteínas desnaturadas no meio intracelular (28). Durante o ciclo celular, as HSPs são encontradas em pequenas concentrações e em diferentes compartimentos dentro das células. Quando uma célula é exposta a algum tipo de estresse, são desencadeadas respostas intracelulares, com o objetivo de proteger a célula de uma possível lesão. Essas respostas têm início com a redução transitória da síntese de proteínas consideradas não vitais, seguida por um aumento na transcrição, tradução e expressão de genes específicos que levam ao aumento da concentração das HSPs (29). Elas colaboram no reparo de estruturas na molécula protéica e na identificação e remodelamento de proteínas danificadas durante períodos de estresse. Além disso, as HSPs auxiliam a síntese de novas proteínas, conservando e mantendo sua forma estrutural (30). As HSPs são consideradas essenciais no processo de recuperação celular. Evidências experimentais indicam que o aumento da disponibilidade de glutamina às células pode aumentar a expressão das HSPs, o que mantém a capacidade da célula em resistir a lesões (31). Em um estudo realizado por Wischmeyer et al.(32) observa-se que, quando adicionada em meio de cultura (2 a 10mmol/L), a glutamina foi eficaz no aumento da proteção de células do epitélio intestinal (enterócitos) de ratos submetidos a lesões do tipo oxidativo. Nesse estudo foi observado aumento na concentração tanto do RNA mensageiro (RNAm) quanto da expressão da HSP de 72kDa (HSP-72). Outros estudos confirmam o papel exercido pela glutamina na expressão das HSPs, em especial da HSP de 70kDa (HSP-70) e HSP-72(27,33). Outrossim, o efeito da glutamina no aumento da expressão das HSPs ocorre de maneira dose-dependente, pois maiores concentrações são necessárias de acordo com a intensidade do processo, fato que provavelmente está relacionado com a necessidade da célula de aumentar sua proteção e, consequentemente, sobreviver em condições de estresse (27). Wischmeyer et al.(34,35) observaram aumento na expressão de outras HSPs, tais como a HSP de 25kDa (HSP-25) e a de 27kDa (HSP-27). Tais resultados foram verificados em diversos tecidos de animais que não foram expostos a qualquer tipo de estresse e que receberam glutamina (0,15 a 0,75g/kg de peso corporal) de forma parenteral. A administração de glutamina, principalmente na quantidade de 0,75g/Kg de peso corporal, reduziu a mortalidade de ratos expostos à endotoxemia, observando-se aumento na expressão da HSP-27 e HSP-72. Resultados de estudos, tanto in vitro quanto in vivo, evidenciam a importância fisiológica da glutamina na expressão das HSPs, principalmente no aumento da proteção da integridade celular. Os mecanismos intracelulares e extracelulares que modulam a expressão dessas proteínas, contudo, ainda necessitam ser mais investigados (30). A expressão do fator transcricional de choque térmico-1 (HSF-1) corresponde a um dos mecanismos reguladores da capacidade da célula em ativar as HSPs em resposta a vários tipos de estresse (28,36). O HSF-1 é um fator transcricional encontrado na sua forma inativa, ou seja, não ligado ao DNA. A ativação do HSF-1 se dá por meio de uma variedade de estímulos de estresse que desencadeiam a fosforilação de monômeros latentes inativos desse fator transcricional, encontrados no citoplasma da célula. Quando fosforilados, esses monômeros se combinam, convertendo-se em um oligômero homotrímero (37). Os homotrímeros do HSF-1, ao serem ativados, se translocam para o núcleo da célula e se ligam a locais específicos da região promotora dos genes das HSPs, denominados elementos de choque térmico (HSEs) (36). Esse mecanismo permite que sinais específicos iniciem o processo de síntese, transcrição e tradução do RNAm das HSPs (figura 2) (37). Morrison et al.(38) verificaram que a glutamina pode modular o processo de tradução e expressão tanto do HSF-1 quanto das HSPs. Os autores observaram que o aumento da concentração de glutamina estimulou tanto o número de ligações dos homotrímeros do HSF-1 aos HSEs, quanto a ligação desses HSEs à região promotora dos genes das HSPs. Peng et al.(39) observaram que, quando adicionada a células fibrobláticas embrionárias de rato, a glutamina pode induzir aumento na expressão do HSF-1, o que contribui para a integridade da membrana celular. Evidências experimentais demonstram que a maior parte das funções exercidas pelo aumento da expressão das HSPs está associada ao fato de essas proteínas apresentarem atividade ATP-dependente, o que lhes possibilita agir como proteínas chaperonas em nível molecular, atuando na proteção contra diversos processos de apoptose celular (30). O elemento fundamental dessa proteção é a ação inibitória realizada pelas HSPs, por meio de sua ligação à rede de proteases essenciais à apoptose celular, como a caspase-9 e o fator apoptótico ativador de proteases-1 (APAF-1) (28). Outro mecanismo envolvido está relacionado com a ação isolada de algumas HSPs, principalmente a HSP-27, HSP-70 e HSP-72, na redução da agregação de proteínas nucleares (28). A inibição de vias de sinalização intracelular, tais como a da proteína quinase ativada por mitógenos (MAPK) e do fator nuclear kappa B (NF-κ, também tem sido indicada como mecanismo envolvido na proteção antiapoptótica desempenhada pelas HSPs (26,40). Tanto a via da MAPK, quanto a do NF-κB, ao ser inibidas, reduzem a ativação de sinais de tradução e expressão de citocinas pró-inflamatórias, tais como a interleucina-1β (IL-1β) e o fator de necrose tumoral-α (TNF-α) (26). De acordo com Wernerman e Hammarqvist (41), os mecanismos de ativação tanto do NF-κB quanto da MAPK são dependentes do estado redox celular, que pode ser alterado de acordo com a concentração intracelular de glutationa (GSH). Por sua vez, a GSH é influenciada pela disponibilidade de glutamina e glutamato intracelular (17,42). Assim, a ativação do NF-κB e da MAPK pode ser modulada pela glutamina (26,42). Em animais submetidos a estado de sepse, a maior disponibilidade de glutamina atenuou a ativação do complexo NF-κB, por meio da inibição da degradação de sua proteína inibidora, IκB-α, e inibiu a fosforilação e a ativação da MAPK (26). Em outro estudo, Singleton e Wischmeyer (27) verificaram que a administração de glutamina promoveu aumento de maneira dose-dependente da expressão da HSP-70, inibindo a ativação do NF-κB e das proteínas quinases que compõem a via da MAPK, sobretudo a c-JUN NH2-terminal quinase (JNK). Suplementações com glutamina Estudos nos quais a L-glutamina foi administrada de forma parenteral demonstraram que a maior oferta desse aminoácido às células pode atenuar sua redução no plasma ou no meio intracelular ocorrido após eventos de estresse metabólico ou enfermidades, tais como dengue (43), câncer (44), HIV (45), queimaduras, cirurgias (44,46), entre outros. Nesses estudos, a utilização de glutamina tem sido correlacionada com melhora na recuperação dos pacientes (2, 46, 47). Déchelotte et al.(48) verificaram que, no estado pós-absortivo, a suplementação oral com glutamina em indivíduos saudáveis e sedentários promoveu aumento na concentração de glutamina e glutamato plasmáticos. Em atletas no estado de repouso, Castell e Newsholme (49) observaram que a concentração plasmática de glutamina aumentou cerca de 30 minutos após a ingestão oral de uma solução com L-glutamina (100mg/kg de peso corporal), podendo retornar aos valores basais no decorrer de aproximadamente duas horas. Em indivíduos fisicamente ativos, Bowtell et al.(50) verificaram o efeito da suplementação oral com L-glutamina sobre a glutaminemia e os estoques de glicogênio muscular, após sessão de exercício intenso de corrida. A suplementação (8g de glutamina em 330ml de água) aumentou a concentração plasmática de glutamina durante o período de recuperação em 46%, o que permite inferir que uma substancial proporção de glutamina administrada oralmente escapou da utilização por parte das células da mucosa intestinal e da captação pelo rim e fígado. Uma vez que células do sistema imune necessitam de glutamina para a manutenção de suas funções e o exercício físico induz o aumento da atividade dessas células, a correlação entre glutamina e sistema imune tem sido estudada (2,6). Especula-se que a redução da disponibilidade de glutamina, ocorrida após exercícios intensos e prolongados possa, de alguma forma, estar envolvida no desenvolvimento de doenças, em especial, as infecções do trato respiratório superior (ITRS) (19). A suplementação com L-glutamina tem sido estudada como alternativa de atenuar ou mesmo de reverter tais eventos induzidos pelo exercício físico (tabela 1) (6,51). Castell et al.(52) investigaram o efeito da suplementação com L-glutamina (5g em 330ml de água) logo após a realização de uma maratona. A concentração de glutamina, alanina e ACR manteve-se diminuída por até uma hora após a realização da maratona, retornando aos valores pré-exercício somente 16 horas mais tarde. Algumas citocinas, tais como a IL-2 e o TNF-α, tiveram suas concentrações plasmáticas aumentadas por várias horas após o exercício, o que denota um marcante estado inflamatório induzido pelo exercício. A suplementação com L-glutamina, contudo, não alterou nenhum dos parâmetros analisados. Estudos relacionando glutamina com o volume celular demonstram que o seu transporte para o meio intracelular promove elevação na captação de sódio, alterando o volume da célula (59,60). O aumento no volume celular pode ser considerado um sinal anabólico, uma vez que altera favoravelmente o turnover protéico, promovendo a síntese protéica e aumentando a disponibilidade de substratos para os diversos sistemas envolvidos no processo de recuperação e reparação tecidual (43,61). Varnier et al.(62) observaram que a administração parenteral de glutamina, após exercício de alta intensidade, promoveu o aumento dos estoques de glicogênio muscular, fato que pôde beneficiar a recuperação da lesão induzida pelo exercício exaustivo. O aumento do volume celular, contudo, não é o único mecanismo pelo qual a glutamina pode influenciar outros sistemas envolvidos na homeostasia celular, tais como o sistema antioxidante. No meio intracelular, a glutamina pode sofrer hidrólise e elevar a disponibilidade de glutamato, que é essencial para a síntese do principal antioxidante celular, a GSH (17). Indivíduos após ser submetidos a eventos de estresse metabólico, tais como cirurgias na região abdominal, foram suplementados, de forma parenteral, durante três dias com L-glutamina. Os resultados mostraram que a intervenção com L-glutamina atenuou a depleção muscular de GSH, o que beneficiou a recuperação dos pacientes (46). A forma de administração pode influenciar o metabolismo da glutamina, bem como a síntese de GSH. De fato, Valencia et al.(47), quando investigaram os efeitos da suplementação com L-glutamina, porém por via oral, em humanos sedentários, não observaram aumento na concentração de GSH plasmática. Os valores de glutamina e glutamato plasmáticos, contudo, se elevaram em comparação com os do grupo controle do estudo. A utilização de dipeptídeos de glutamina, tais como a L-alanil-L-glutamina por via oral, representa uma alternativa não invasiva de aumentar a disponibilidade de glutamina às células (43, 63, 64). De fato, a suplementação aguda oral com o dipeptídeo (L-alanil-L-glutamina) em ratos sedentários foi mais eficiente em promover o aumento da concentração plasmática de glutamina (após 30 minutos da intervenção nutricional) do que quando o aminoácido foi ministrado na forma livre (63). Em um estudo foi avaliado o efeito da suplementação crônica oral com L-glutamina na forma livre ou como dipeptídeo sobre as concentrações plasmática, muscular e hepática de glutamina em ratos sedentários (65). Os resultados demonstraram que a suplementação crônica com L-glutamina livre ou dipeptídeo não alterou a glutaminemia; o grupo suplementado com o dipeptídeo, contudo, apresentou maior concentração de glutamina muscular e hepática. Em animais exercitados e submetidos a teste de exaustão, Rogero et al.(64) observaram que a suplementação crônica com o dipeptídeo promoveu maior concentração de glutamina nos músculos sóleo e gastrocnêmio imediatamente após o teste de exaustão em relação aos grupos controle e suplementado com L-glutamina livre. Esses estudos in vivo demonstraram que a utilização de glutamina na forma de dipeptídeo pode vir a ser uma interessante alternativa de intervenção nutricional para o fornecimento de glutamina por via oral ao organismo, tanto em situações de repouso quanto em situações de estresse metabólico, como em exercícios físicos intensos e prolongados. CONCLUSÃO A glutamina está envolvida na síntese de ácidos nucléicos, nucleotídeos, proteínas entre outros. Quando catalisada pela enzima glutaminase, a glutamina dissocia-se em íon amônio e glutamato. Por meio do glutamato, pode ocorrer a síntese de outros aminoácidos e de antioxidantes como a GSH, principal antioxidante celular não enzimático. A realização de exercícios físicos intensos e prolongados pode reduzir a disponibilidade de glutamina às células, o que influencia tanto a concentração de GSH quanto a expressão de HSPs. Uma das principais vias da síntese de HSPs ocorre por meio da ativação do HSF-1. Estudos demonstram que a glutamina pode modular a ativação do HSF-1, aumentando a expressão de HSPs, o que resulta em maior proteção da célula e menor ativação de redes de sinalização celular pró-apoptóticas. A suplementação com o dipeptídeo L-alanil-L-glutamina pode representar uma eficiente alternativa de aumentar a disponibilidade de glutamina ao organismo. Créditos: “Glutamine: biochemical, metabolic, molecular aspects and supplementation” Vinicius Fernandes Cruzat; Éder Ricardo Petry; Julio Tirapegui Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Achei no meu pc e decidi compartilhar, devo ter pego de algum forum pela net, a linguagem ta bem rebuscada, mas serve a nivel de informação. Spoiler Uso de EAs baseado em evidências Ginecomastia: Uma atualização Farmacocinética & Farmacodinâmica Dos Ésteres Em Veículo Oleoso Leiam as regras antes de postar, evitem serem suspensos.Viu algum tópico ou post que foge as regras do fórum? REPORTE.Clique em DENUNCIAR POST e ajude a moderação a manter a qualidade do hipertrofia.
Postado 28/11/2010 às 16:16 11/28, 2010 excelente texto, ainda nao li tudo, mas pretendo. Nunca usei glutamina, tenho uma vontade do c*ralho principalmente agora que to em cutting, mas tá caro ;/ Foda é a quantidade, 0,75g/kg, caralho. /quit
Postado 29/11/2010 às 20:17 11/29, 2010 Excelente artigo retirou todas as minhas dúvidas sobre a Glutamina, só achei a dose um pouco excessiva para nós brasileiros hahahaa. Abraços "Squatting is like breathing" Kstar
Postado 2/12/2010 às 17:05 12/2, 2010 Favoritado aqui, excelente tópico! TRAINING LIKE A FREAK... THIS IS BLOOD AND GUTS
Postado 5/12/2010 às 20:26 12/5, 2010 Bom artigo, muito informativo... linguagem bem técnica, mesmo assim excelente. Já notei que poucos dão atenção á glutamina (inclusive eu). Gostaria de saber se alguém faz uso e recomenda...Por exemplo, fiz um treino há 3 dias e estou quebrado até hoje,raramente isso acontece comigo, mas quando acontece fico muito p. da vida. Creio que se começar a usar glutamina o período de recuperação pode encurtar muito... Mais pra frente quero juntar o uso da gluta com o whey/crea/caseina/leucina
Postado 6/12/2010 às 23:36 12/6, 2010 L glutamine normal mesmo, mas uma bem legal é essa: https://www.bodybuilding.com/store/mhp/glutsr.html "Squatting is like breathing" Kstar
Postado 7/12/2010 às 00:42 12/7, 2010 óptimo artigo valeu por postar, pro ano que vem, vou tomar a Glutamine Powder 500g da marca xcore nutrition + outros suplementos ainda em analise Abraços
Postado 8/01/2011 às 14:17 01/8, 2011 comprei glutamina e estou um pouco na duvida. A principio eu iria mandar no pós ( 10g ) e antes de dormir ( 5g ), mas me deram dicas de mandar 10g no pré treino ( eu to mandando NO XPLODE, dai mandaria junto ) e 10g no pós treino... to num dilema com isso..
Postado 11/01/2011 às 01:50 01/11, 2011 Tenho uma glutamina aqui, mas quando vejo não fica bem claro, e tem poucos tópicos sobre gluta. O mínimo realmente é 20g para fazer efeito digamos? Qual os melhores horarios e dosagens? Será que 5g pós treino e 5 antes de dormir não surtiriam efeito?
Postado 11/01/2011 às 01:52 01/11, 2011 10g é uma dosagem meio baixa cara, 20g normalmente é a dosagem mais indicada para conseguir melhores efeitos. Depende pode jogar isso intra treino mesmo "Squatting is like breathing" Kstar
Postado 12/01/2011 às 01:10 01/12, 2011 Pois é, mas qual o melhor horario tu, e a galera acha Hellmann?
Postado 19/01/2011 às 15:39 01/19, 2011 Pois é, mas qual o melhor horario tu, e a galera acha Hellmann? Acredito que doses entre 10-15 gr sejam ideais para glutamina Acho interessante fracionar em doses de 4-5 gr, principalmente na primeira refeição e no pós-treino.
Postado 19/01/2011 às 19:57 01/19, 2011 Glutamina, Vitamina C e Vitamina E podem ajudar o seu metabolismo, mantendo uma cobertura sobre os devastadores efeitos do cortisol. Este trio pode ajudar a conter os níveis de cortisol, o que deve ajudar na manutenção dos níveis de testosterona e massa muscular durante a dieta. Ingira 1.000 miligramas de Vitamina C e 400-800 UI ao dia de Vitamina E, tomada em qualquer refeição. Dependendo do seu tamanho, você vai precisar de aproximadamente 20g de glutamina, divididos em 10g antes do treino e 10g depois. Aqueles pesando 80 quilos ou menos podem usar doses menores, aqueles que pesam mais devem tomar essa dose ou mais. Fonte: SimplyShredded.com Mais dicas e espero que seja de utilidade para a galera!!! :) Sao Paulo, o soberano
Postado 24/01/2011 às 12:23 01/24, 2011 to pensando em tomar 15 gramas so que fracionada 5 ao acordar, 5 no pos, 5 antes de durmir sera que fica bom?
Postado 25/01/2011 às 00:15 01/25, 2011 Também penso em tomar algo assim, só não vou tomar ao acordar porque to fazendo LG
Postado 21/04/2011 às 18:38 04/21, 2011 um dos meus aminoacidos preferidos. "Deve-se aprender sempre, até mesmo com um inimigo". Sir Isaac Newton "Não vale a pena conversar com o tolo, pois ele despreza a sabedoria do que você fala" Provérbios 23:9
Postado 9/05/2011 às 19:03 05/9, 2011 - tenho 18 anos , tenho 1,68 de altura, queria saber tipo o que ajuda pro meu crescimento , me ajudem ai:D, malho a 9 meses vou fazer 1 ano, comecei a tomar ADEFORTE amigo meu indicou , mee ajudem ai me mandem a resposta por email - flaudiziobrandao@hotmail.com
Postado 9/05/2011 às 20:15 05/9, 2011 to pensando em tomar 15 gramas so que fracionada 5 ao acordar, 5 no pos, 5 antes de durmir sera que fica bom? eu botaria no meu pós treino umas 10g+ uns 4~5 do whey . Se for usar ela de noite blz. http://www.neave.com/strobe/ Guia Dos Movimentos De Musculação
Postado 2/11/2011 às 00:38 11/2, 2011 ae galera, tava pesando em colocar a glutamina na minha suplementaçao, mas como o whey q tomo pos treino já contem... achei q seria meio desnecessario pra juntar com o whey. ajudem ae ... valeu
Postado 4/11/2011 às 01:09 11/4, 2011 ae galera, tava pesando em colocar a glutamina na minha suplementaçao, mas como o whey q tomo pos treino já contem... achei q seria meio desnecessario pra juntar com o whey. ajudem ae ... valeu desnecessário nada, pode colocar pelo menos 10g de glutamina no pós treino, seria interessante antes de dormir também com uma caseína, abraços Cursando Nutrição.
Postado 6/11/2011 às 15:29 11/6, 2011 Texto completo valeu! Comecei semana passada desse jeito; 2gr no pre treino 8gr no pôs treino 5gr antes de durmir RANGO DEPOIS DE FAZER O PÓS TREINO SQUEEEEEEZE IT .... Dead Lift fan 19 #
Postado 8/11/2011 às 12:54 11/8, 2011 pse alguem tiver ae, preciso saber o pq nao é indicado doses de glutamina maiores que 10gr caso fazemos uso de Pre Workouts, ouvi dizer que aconteceria uma vaso constricção, mas não achei nada bem fundamentado sobre isso, sempre usei glutamina.
Postado 30/11/2011 às 00:00 11/30, 2011 toma whey e +10g.. nao precisa exagerar galera a nao ser que vc ache dinheiro no lixo 5g de manha e 5 antes de dormir
Postado 21/05/2012 às 16:58 05/21, 2012 Oi. Sempre dizem que se deve tomar preferencialmente no pós-treino e/ou antes de dormir. Até concordo (mas nem tanto com o pós treino). O problema é q de ceia, eu tomo um shake de albumina e costumava botar 5g de glutamina tb. Da última vez q fui na nutricionista, ela falou pra não tomar a Gluta com a albumina antes de dormir por 2 motivos: - Melhor tomar durante o dia, em horários que precedem o treino, pois assim o corpo já estaria bem abastecido de glutamina para o treino. - glutamina é melhor tomar sozinha, de preferência com suco ou algo doce, para melhorar a absorção. Então agora ficou a dúvida: Devo ou nao botar glutamina no meu shake de albumina antes de dormir? Ela será bem absorvida mesmo junto com albumina e leite? Minha intenção é tomar 5g com suco natural, 30 mins antes do treino e mais 5g no shake de ceia, caso seja OK misturar com essas coisas q falei. No desjejum nem uso, pq já to usando whey e dizem ai q whey e glutamina podem competir um com o outro por absorção (na verdade, isso é outra dúvida). Sei tb q nego pode falar q 10g (5 + 5) é mto pouco, q tem q tomar pelo menos 20g e tal... Mas to de boa com esses 10g por dia. Talvez passe pra 15 (5+5+5). Obrigado. Abs
Postado 24/05/2012 às 23:57 05/24, 2012 Normalmente um bom whey já possui 4 a 5 gramas de glutamina e 4 a 5 gr de bcaa, que parte e convertida em glutamina por um processo de oxidação, então no pós treino 30 gr whey + 5 de glutamina esta ótimo ao meu ver, e para quem toma whey ao acordar acredito ser desnecessário. Estou tomando 5 antes do treino + 5 pós + 5 antes de dormi acredito que se fosse acrescentar algo seria ao acordar + 5 gr, doses acima disso e desperdício ao meu ver.
Postado 27/09/2012 às 16:14 09/27, 2012 Um bom Whey tem 4-5 grs de glutamina por dose. Então..fiz as contas e cheguei a conclusão que é melhor comprar um whey da optimum, por exemplo , e tomar 4 doses por dia, do que um nacional sem glutamina e ter que pagar mais $$$ pela glutamina separada. Concordam ? O mesmo vale para BCAA... Estou certo ?
Postado 29/09/2012 às 02:32 09/29, 2012 Pra todo lugar que eu vou existe um consenso que glutamina é um péssimo suplemento, que não vale a pena, ineficaz, etc. Mas quando chego neste tópico, todo mundo leva a sério. O que o pessoal daqui sabe que o resto do mundo não sabe?
Crie uma conta ou entre para comentar